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temporal autoeorrelation  functions of sea surface height (SS11) variations are estimated and

employed for studying anisotropic  SW fields varying in a broad range of scales. Due to

high accuracy (a few millimeters in terms of SS11 variation) of the presently developed

statistical technique, we find, in particular, that wavenumber  spectra of SSH variation along

the equator exhibit a power-law behavior F(k) oc k-2 on scales from about 1000 km and up

to 104 km. Based on analysis of the spatio-temporal  autoeorrelation,  these oscillations are

identified as a broad-band system of baroelinic  Rossby  waves whos:  characteristic veloeity

is about 1.3 ntis and the veloeit  y of longest-wave components about 2.1 nl/s. Analysis of

SS11 variations in the North Atlantic reveals anisotropic 2-d spectra characterized by a rapid,

nearly power-law-type roll-off at wavenumbers above 0.02 rad./km.  The rate of this spectral

fall-off is consistent with the kinetic energy spectra of 2-d vortex turbulence. This behavior

disagrws  with the earlier estimates of SSH spectra.
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1. Introduction

For studies of large-scale oceanic processes - particularly, equatorial waves - altimetry

has no alternatives, for the broad range of spatio-temporal  scales of oceanic motions and a

high accuracy required of a measuring technique are not achievable with conventional

observation systems. However, the irregular sampling and other difficulties of satellite

altimeter observations necessitate development of special techniques for data analysis.

The relatively large separation of Topex/Poseidon  (T/P) ground tracks (315 km for

ascending or descending tracks at the equator) and their 10-day ~peat  cycle detemline  spatial

and temporal sampling rates of T/P measurements. The accuracy of SSH determination is

presently believed to be about 5 cm - in terms of the overall nns SSH error. Although this is

sufficient for many problems of ocean circulation, some studies require higher accuracy and

finer spatio-temporal  resolution. An example is given by Kelvin, Rossby and other ocean

waves characterize-d by a small amplitude and a broad range of scales.

While the magnitude of SSH variations caused by strong episodically occurring events

(pulses) of equatorial waves may attain a few decimeters, the magnitude of SS11 oscillations

representing the persistent background of long waves is only about 5 cm. These

oscillations are studied in section 4. Another important feature of the SSH field is its

intrinsic statistical anisotropy. In section 3 we estimate two-dimensional wavenumber

spectra of SSH variations at mid latitudes in the North Atlantic.

A technique suggested in the present work yields quantitative statistical characterization

of SSH variability and expands the range of applications of satellite altimeter data for ocean

studies. One such application might be the use of observed SSH spectra for validation of

numerical models of global ocean circulation.

The approach described in Section 2 allows one to identify SSH variations with

magnitude well under 1 cm, on time scales from a few days and up, and spatial scales

starting at about 70 km. The analysis is presently confined to only the most basic properties
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of the SSH field: its spatial autocorrelation,  mixed spatio-temporal autocorrelation  and

wavenumbcr (power) spectra. However, these statistical characteristics contain a wealth of

geographic as well as dynamic information - yet to be utilized in ocean studies. The 2-d

spectra allow one to assess anisotropy and multiple-scale variability of the SSH field

(associated with elements of geostrophic  turbulence), help identify sources and sinks of

kinetic energy and vorticity  of two-dimensional flows, investigate (baroclinic) inertia-gravity

and planetmy  waves (such as equatorial Rossby waves), etc. Mixed autocorrelation

functions characterize wave dispersion and yield estimates of the wave propagation velocity.

While 1-d spectm (corresponding to SSH va~iations along satellite ground tracks) -

whose estimation from altimeter data is straightforward - were extensively studied in the past

years (e.g., [Fu, 1983; Le ‘l%aon et al., 1990; Mey and Menard, 1989; Le Traon,  1992]), 2-

d spectra remained out of reach owing to formidable difficulties of their determination. One

such difficulty is due to the fact that altimeter ground tracks do not provide a sufficiently fine

and regular coverage required by standard (FF1’-based)  techniques of spectral analysis.

Placing the data onto a regular geographic grid yields the mesh size of about two degrees.

As a result, the highest wavenumbers resolved based on the gridded data are about 0.01

rad/km,  and the estimation of 2-d spectra looses much of its worth. Indeed, the range of

spatial scales for interesting dynamical features, - for instance, warm and cold COE rings,

meso-scale eddies, meanders of ocean currents, etc., - starts at tens kilometers.

The technique described in the following section permits using a small (down to two)

number of satellite passes occurring in an area of interest within a short time interval (down

to one day) called “the interval ofs ynchronicit  y.” This approach results in a dramatic

increase of the spatio-temporal  resolution of the spectral analysis and, - due to averaging

over a large ensemble, - it suppresses error noise in altimeter measurements. While our

present discussion is focused on details of the statistical approach, section 3 and 4 provide

some new data on and insight into large-scale ocean dynamics.
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2. Evaluation of spatio-temporal  autocorrelation  functions and wavenumber

spectra

“l’he SS1 I data employed have been corrected for the sea state bias, static atmospheric

pressure and various other intervening factors - as described in (Benada,  1993). The geoid

and tidal (solid Earth and ocean) variations have also been removed from the data. The

residual error of SS11 measurements is presently believed to be about 5 cm. One particular

component of this enor is of special concern. I’his component arises from the remaining

uncertainty in the satellite orbit and could introduce a slight difference in the SS11 values on

different satellite passes. In order to reduee  possible effeets of the orbit-dated SSH offset

between any two tracks, we employed a conventional orbit correction routine [see, for

example, (Tai, 1989) and (Zlotnicki  et al., 1989)], whereby a quadratic polynomial fitted to

track segments 3000 km long is subtracted from the SSH values. Since this correction may

yield some undesirable high-pass filtering of SSH variations along satellite passes, we

emphasiz~  that, due to its large wavelength, this correction may distort only very large-scale

SS11 variations (with length scales approaching 3000 km) along the tracks.

Our approach exploits the idea of a “synchronicity  interval,” At. Ilis is the period

within which SSH temporal variations are assumed to be negligible, The satellite passes

occurring within this interval are treated as simultaneous. Long series (a season or a year

worth) of altimeter data for a given ocean area are then broken down into a large number of

(overlapping) subsets of quasi-simultaneous SSH observations. By design, each subset

contains data from at least one ascending and one descending track. Using pairs ofSS11

points from all quasi-simultaneous tracks, we obtain SSH products ~(x,t)~(x+r,t+&) for

bins on the r-plane, whetv 0< bt < At. The left-hand-side inequality means that the pairs of

points belonging to the same altimeter pass am excluded, If the synchronicity  interval is

very short - as illustrated in Fig. 1 - the points generated on the r-plane by any given

“synchronous” subset yield only a limited coverage. Of course, as additional synchronous

subsets are subsequently used, the coverage increases tending to fill the r-plane. }Iowever,
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a one-day synchronicity  interval generates a highly uneven coverage (in terms of the number

of point pairs available for statistical averaging within each r-bin). The most complete and

uniform coverage of the r-plane is achieved by taking At to be the period of the orbit repeat

cycle (10 days for the T/P mission). However, this would limit our consideration to

relatively slow processes. In section 4, we use short synchronicity intervals to investigate

relatively fast SS14 oscillations caused by equatorial waves. A particular choice of the

synchronicity interval, - hence the density and unifom~ity of the r-plane coverage, -

depends on the problem at hand and on the satellite orbit configuration.

The SSH products are calculated for all synchronous subsets. Ultimately, the time

difference &in the products ~(x,t)~(x+r,t+&) is ignored. Moreover, since the SS11 field

is treated as statistically stationary and spatially-homogeneous, the absolute times t and

positions x are also ignored. The autocorrelation  function W(r) is ultimately found by

averaging all products ~(x)~(x+r) falling into pm-set Ar-bins (say, 20 by 20 km) on the r-

plane. Respectively, the bins’ size determines the number, N(r), of individual SSIi

products available for an estimation of the autocormlation  function at a given “point” on &e

r-plane,

While the above procedure usually generates an enormous number of SSH products for

intermediate spatial lags, it yields few products for lags comparable to the linear size of the

observed area. Therefore, in order to ensure adequate sampling for large lags, we

additional] y use track segments outside the area of primary interest. These segments form,

what we call, the “fringe” and are shown in Panel A of Figs. 1 and 2 by thin dotted lines.

The fringe points arc paired only with the inside points - to ensure pertinence of the

autocormlation  function to the given ocean area.

The statistical error, AW(r), is related to the SSH measuring error, e, by AW=&~N

where N(r) is the number of independent products ~(x,t)~(x+r,t+&) employed to estimate

W(r). At short synchronicity  intervals, this number is distributed in the r-plane very

unevenly.
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Estimation of the autocorrelation  function from observation points forming a complex

spatial pattern is done rather efficient] y by taking pairs of points in any order and then

referencing the products to a regular grid of spatial (temporal) lags. In the present work we

employed 35 cycles covering 350 days of the Topex mission. In order to reduce the

computer time, we sampled on] y every second, or even fourth, (1-see average) SS11

measurement along satellite tracks. For a case in which every 2nd SS11 measurement is

used, the resultant distribution N(r) is presented in Fig. 3 where we employed At = 10 days.

For a Ar-bin size of 20 km, the mean number of independent SSH products at a point on the

r-plane is <N> = 8.103. In terms of the error c)f W(r) estimation, this is 0.28 cm2 - which

is equivalent to the SS11 measuring accuracy of 5 mm. The minimum and maximum values

of N(r) in a given example wem 880 and 6.1 d, respective y. In order to reduce adverse

effects of N(r) variations, the autocormlation  function is eventually smoothed to suppress

its undulations on scales near the Ar-bin siz~. In the examples illustrated below, W(r) was

smoothed using 3-point linear smoother.

Very short synchronicity  intervals (1 to 4 days) result in a rather irregular coverage of

the r-plane. Therefore, some kind of gridding may “sometimes become necessary in order

to fill a few occasional gaps on a regular (either rectangular or @t.r) grid of W(r) values. in

such (rather rare) cases, we used the Delaunay  triangulation (Akima, 1978) whereby a plane

is drawn through every three neighboring points W(rl), W(rj), W(rk) to produce values of

the autocorrdation function at arbitrary points inside a triangle ri, rj, n.

When calculating the wavenumber  spectrum F(k) from W(r), we employed a tapering

technique (equivalent to the Harming window used in the standard spectral analysis) which

reduces the remaining effect of a finite size of the ocean area.

Before applying the technique to satellite data, it was tested on simulated random fields

with known spectra. “Sea surface height” fields were generated as 2-d Gaussian random

fields with a given spectrum, and a delta-correlated random noise was added to simulate

measuring errors. Under conditions similar to satellite altimeter observations, the technique



showed very good perfomlance  in terms of reproducing the original autocorrelat ion

functions and spectra.,

While the presently limited accuracy and volume of Topex observations make it difficult

to accurately estimate a full 3-dimensional spectrum, it is still possible to quantify the

temporal-spatial evolution of the SS1 I field by employing pairs of points separated by both

spatial and temporal lags. Thus, we evaluate a mixed, spatio-temporal  autocorrelation

W(r,z)  -in section 4. Ile estimation of W(r,~) is analogous to that of W(r): we use SSH

measurements reported at time moments “known” only to a certain accuracy (i.e., within the

synchronicity  interval). Therefore, the products ~(x,t)~(x+r,t+st+t)  will be useful for the

estimation of W(r,~) only if&is sufficiently small. Specifically, the choice of the time lag

is constrained by the condition: At <C T.

The spati~temporal  autocorrelation  is of great importance for analysis of wave

processes. Using a dispersion relationship, @ = ~(k), the mixed autocormlation

function is related to the wavenumber  spectrum by

W(r, ~) = jJ@(k, m)ei(kr-m) dkd(i) = JJF(k)5(o – Q(k)) ei(kr-m)dkd(i) =

= J~(k)e~k[r-’(~)’]&

(1)

where @(k, O) is the 3-d spectrum, F(k) is the 2-d spectrum and c(k) is the wave phase

velocity. In a non-dispersive case, (1) reduces to:

W(r, ~) = JF(k)elk(r-cT)dk = W(r – CT) (2)

In other words, at a fixed lime lag, the mixed autocorrelation  function W(r,~), plotted as a

function of r, will differ from the spatial autocormlation  function W(r,O)  by a uniform

horizontal shift u about the origin. This shift is used in section 4 to estimate the

characteristic velocity of Rossby waves.
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in section 4, we estimate a one-dimensional spatial and tw~dimensional  mixed

autocorrelation  functions for a narrow zonal channel centered about the equator. The

procedure, being similar to the evaluation of the 2-d spectra, hardly requires a detailed

explanation. The only important comment here is that, at large spatial lags (for which this

analysis was carried out), the Fourier transformation of W(r) can be avoided. This is

because the 1-d spatial autocorrelation  function, as shown in section 4, takes a very special -

linear  - form, This form is known to yield asymptotic wavenumber spectrum F(k) = k-2 in

the high-wavenumber range (e.g., Glazman  and Weichman, 1989). In general, the high-

wavenumber range of a 1-d spectrum is given by

F(k) w k-3+2~ , (3)

which, for ~ >0, corresponck  to the short-range asymptotic of the autocorrelation  function

W(r) = W(O) – Cr2-2~f (4)

where W(0) and C are constants. Ilence, when W(r) exhibits a linear behavior, the

spectrum rolls off as k-2.

3. Characteristic features of the SS11 field at mid-latitudes in the North

Atlantic

Let us illustrate the technique by estimating 2-d power spectra F(k) of SSH spatial

variations in the North Atlantic. In the absence of gravity waves (such as barotropic  or

baroclinic  inertia-qavity  waves), the SSH variations represent a response of the free surface

to the vertical component of oceanic motion (eddies, rings, currents, etc.). These variations

are relatively slow. Hence, estimating F(k) in a 10xlO degree area with a synchronicity

interval large enough to filter out possible gravity waves, one anticipates to find spectra

compatible with the k-3 and/or k-5~  spectral densities of kinetic energy of 2-d turbulence

(for enstrophy and energy spectral cascades, respectively). Based on the geostrophic
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relationship, the SSH power spectrum should fall of as k-5 (in terms of the 1-d spectrum

defined by (5)), but no slower than k-l l/~.

Figure 4 shows regions selected to test our technique. In Figures 5 and 6, the

autocorrelation  function and wavenumber spectrum are presented for Region 2 in the Notih

Atlantic for a 5-day synchronicity interval. The same functions calculated for a 10-day

synchronicity  interval are shown in Figs. 7 and 8. Evidently, the difference between the

two cases is rather small, indicating that the main features shown in Figs 5 and 6 do not

change on time scales of several days. The spectrum exhibits considerable anisotropy and

distinct spectral peaks. The main peak corresponds to about 0.015 rad/km, which points to

the spatial scale of about 400 km for most energetic SS11 variations in this region. Figures 9

and 10 illustrate W(r) and F(k) for Region 1. In Figure 11, we present orthogonal sections

of these spectra. Figures 6-11 show that, depending on the orientation of altimeter ground

tracks, linear sections of the autocormlation  function and of the 2-d spectrum maybe exhibit

considerable differences. Hence, 1-d spectra based on individual (ascending or descending)

passes do not generally provide unambiguous spectral information.

We also find it highly interesting that in some ocean regions, our results disagree with the

spectra reported by other investigators (e.g., with Le Traon and Rouquet,  1990). In the

previous studies, SS11 spectra were calculated using data from ascending and descending

tracks separately. Assuming an approximate statistical isotropy of the SSH field, Le Traon

et al. presented the averages of these two spectra. [To ensure that our data are statistically

consistent with those used by Le Traon et al., we, repeated their along-the-track calculations

and found that the resultant 1-d spcxtra are in excellent agreement with the spatra reported

by Le Traon et al.] For the purpose of the present comparison, we reduced our 2-d spectra

F’(/c, ~) to a l-d form

7r12
F(k) = jF(k,0)kd8

– X12
(5)
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This spectrum, plotted in Fig. 12 for Regions 1 and 2, exhibits a spectral fall-off in

agreement with the 2-d vortex turbulence theory: we find F(k) w k-4 - consistent with the

kinetic energy spectra mentioned earlier. In contrast to our procedure, the SSH

measurements employed by the previous authors were virtual] y instantaneous (a 1000 km

ground track segment is sampled by a satellite within 3 minutes). In terms of our

synchronicity  interval, this means At = O. In a number of North Atlantic regions,

particularly in the two regions used in our analysis, the l-d spectra found by b Traon et al,

showed a rather slow spectral fall-off from F(k)= k-3 to F(k) = k-3/2.

A possible explanation of this discrepancy can be suggested based on the following

argument. Using SSH data obtained by a virtually instant sampling along the tracks, the

previous authors were able to detect fast SS1 I oscillations related to the gravity wave mode

of oceanic motions. Although the tidal components had been removed from the S SH signal,

other (less well known) components were not. Inertia-gravity waves are persistent in the

ocean due to a virtual] y permanent external and “internal” forcing. Owing to their relative] y

large amplitude (in terms of the termocline  depth oscillation) and small phase velocity, “

baroclinic  waves have a sufficient degree of nonlinearity and large enough life-time to

produce a developed inertial cascade of wave turbulence. The external forcing is provided

by random fluctuations of atmospheric pressure and by wind stress variations, whereas by

the “internal” forcing we mean various types of hydrodynamic instability of ocean currents

and jets, the radiation of gravity and/or Rossby waves by moving eddies (e.g., Stepanyants

and Fabrikant,  1992.), etc. Therefore, the energy source is practical y permanent making

spectral fluxes of the wave energy and action feasible. Recently, Falkovich  and Medvedev

(1992) predicted a theoretical spectrum for this situation. In terms of (5), their result is

‘7’3 This is in reasonable agreement with some of the estimates presented byF(k)=k .

Fu (1983), De Mey and Menard (1989), Le Traon and Rouquet  (1990) and other authors.

4. Equatorial wave observations



I.arge-scale  zonal motion in the Equatorial Pacific can be deduced from a sequence of

SS11 contour plots by tracking propagation of individual, conspicuous features of the SS11

field (e.g., [Delcroix  et al. 1991]). IIowever, this (rather qualitative) approach permits

positive identification of only rather large pulses of equatorial waves occurring episodically.

Quantitative analysis of stationary, broad-banded SS}1 variations (having small amplitude

and representing equatorial wave regime) calls for more elaborate, statistical techniques. As

shown below, wave motions characterized by broad spectra would require a millimeter

accuracy of SSH determination if conventional (deterministic) techniques of altimeter data

analysis are to be employed.

The resolution of our analysis of equatorial waves is limited to spatial scales about 200

km and time scales about 10 days. We consider SSH spatial and temporal variations in a

narrow zonal channel - 1.0 degree wide and 12,200 km long - across the entire equatorial

Pacific. The altimeter ground tracks for a small segment of the equatorial region are

illustrated in Fig 13 to show that the crossover points requird  for short spatial lags are

located at *2O latitudes - beyond the narrow zanal band selected for our analysis. We

subsarnpled  SSH measurements by extracting every fouflh point along the tracks. This

allowed us to calculate a set of 1-d autocorrelation  functions W(L y=const)  for several

latitudinal positions, y, within the zonal channel; r is the spatial lag along the equator. We

selected the synchronicity  interval At = 4 days. On the one hand, this interval is sufficiently

short to permit accurate estimation of the mixed autocorrelation  function W(r,z) with z down

to 10 days; on the other hand, this At is large enough to yield a sufficiently dense coverage

of the r-axis. In Fig. 14 we illustrate effect of the synchronicity  interval on the shape of the

spatial autocorrelation  function for the equatorial Pacific (averaged within a 1 degree zonal

channel). Apparently, At= 2 days is sufficient to bring out the basic (linear) behavior at

large scales which is then observed in all subsequent panels of Fig. 14. IIowever, the 2-day

synchronicity  interval results in a rather sparse coverage of the r-axis leaving only two

points (r= 1200 km and r = O km) - to describe W(r) near the origin. Panels (c) and (d) of
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Fig. 14 show that the linear regime in W(r) is confined to scales from about 1200 to 9000

km.

Ile mixed autocorrelation  function W(r,~) shown in Pig. 15 represents the result of

latitudinal (i.e., over y) averaging of several W(r,z; y=const)  calculated for each latitude, y.

Figures 14-15 point to the existence of two regimes of SSH spatial variations. The short-

scale variations responsible for a sharp spike at the origin have spatial scales under 1000 km

and art characterized by the SS11 variance w2> = 10 cm2. These variations maybe caused

by rapid SS11 oscillations associated with shorter equatorial waves, possibly eastward

propagating Kelvin or Yanai  waves. Their investigation would require an elaborate analysis

going far beyond the scope of the present work. The long-range variations (corresponding

to the linear range in W(r)) have spatial scales up to 10,000 km. Their amplitude, ~2>1~

= 3 cm, is found as ~kV(A) where A is the characteristics distance (A = l@ km) at

which W(r) starts displaying the linear trend.

The most interesting and unexpected feature of the SSH field observed in Figs. 14-15

is the linear behavior of W(r) on scales from about 1000 km and up to almost the basin size

scale. In accord with (3) and (4), this corresponds to the 1-d wavenumber spectrum F(k) ~’

k-2. The nature of SSH oscillations on these scales can be inferred from W(r,z) in Fig.

15. Ignoring for a moment the distortion of W(r,z) near the peak, we notice a gradual

westward propagation of the entire shape. Therefore,

broad-banded system of westward propagating waves

is found as

~ = ~(~)

‘t

where Ar(z) is the westward displacement of the autocorrelation  structure overtime z.

W(r) of Figs. 14-15 represents a

whose characteristic phase speed, C,

(6)

Based on several plots of W(r,z) for different values of z we find F = 1.3 mls which is in

agreement with the previously known estimates, e.g. (Delcroix  et al., 1991). To estimate

the maximum velocity, co, (of longest waves) one should take into account wave

dispersion. The dispersion distorts the shape of W(r,z) as z increases above 10 days. Its



study is facilitated by using a simple spectral model of planetary waves - as done in the

Appendix - which ultimately yields an estimate co =2.1 ds - in agreement with the

present knowledge on equatorial baroclinic  Rossby waves (e.g., I~Blond  and Mysak,

1978).

The smearing of W(r,z) near the peak, at z >0, is of great interest. Two main factors

responsible for the round shape of W(r,~) are: (i) the vanishing of the sharp spike related to

short-scale SS}1 variations and (ii) the weak dispersion of Rossby waves. The latter is

considered in the Appendix, while the fom~er can be explained as follows. If the short-range

variations are due to some kind of equatorial waves, their absence in Fig. 15 would indicate

that such waves propagate eastward and/or have a relatively short life-time. If, however,

these variations are associated with slow vertical motions (mesoscale  eddies) possessing no

dispersion law, the vanishing of the spectral spike would confirm a non-wave-like nature of

these variations.

Strong meridional variations associated with the lateral structure of the equatorial

waveguide are responsible for a considerable spatial inhomogeneity  of the SSH field in the

direction across the equator. Therefore, our analysis is limited to a narrow zonal  band - well

inside the 320 latitudes (known as the critical latitudes [1-eBlond  and Mysak, 1978] for the

trapped modes). Since the T/P altimeter ground tracks - Fig. 13- have no crossover points

within this band, we were not able to analyze short-scale SSH variations. However, under

a different orbit configuration, such analysis would be possible.

5. Discussion and conclusions

The statistical technique described in section 2 and illustrated in sections 3 and 4

allows one to analy= variations of 2-dimensional, time-varying fields in a broad range of

spatial and temporal scales. Based on the concept of a synchronicity interval, this method

has great advantages over traditional techniques of satellite data analysis which only employ

data specified on a regular grid. Apparently, a similar approach can be used to estimate
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higher-order statistical moments containing information about irregular, intermittent events

of SS11 variations. “fhe main drawback of the present technique is the lack of a solid

theoretical basis. The applications illustrated in sections 3 and 4 and the tests of the

technique on simulated data (mentioned in section 2) provide empirical confirmation that the

results (such as 2-d spectra and spatio-tetnporal  autocomelation  functions) are meaningful

and accurate. However, the range of conditions (i.e., the spatial and temporal separation of

satellite passes, characteristic times of oceanic motions being measured, degree of statistical

spatial inhomogeneity  and non-stationarity  of measured fields, etc.) under which the

technique yields useful results remains largely unknown.

In addition to the SS11 field analysis, the technique can be applied, without any major

modifications, to surface wind or significant wave height observations by a satellite

altimeter. Applications to other satellite measurements (SAR, scatterometer,  etc.) would

require modifications to account for the two-dimensional nature of these instruments’

sampling within their swaths.

Two applications considered in sections 3 and 4 yielded the following conclusions:

1) SSH variations whose characteristic time scales exceed five days (in terms of the

synchronicity  interval At) produce energy spectra (5) with the spectral fall-off as steep as -

k~. This behavior agrees with predictions of the 2-d turbulence theory. The disagreement

with the earlier estimates - e.g. by Fu (1983), De May and Menard (1989), 1-e Traon and

Rouquet  (1990) ancl  h Traon (1992) - is explained as a nxult  of possible manifestations of

the inertia-gravity wave turbulence in the SSH spectra: the wave turbulence is observed

when SSH measurements are taken within a sufficiently short time interval - as is the case

when the spectra are estimated based on individual satellite passes.

2) In a wide range of scales (from about 1000 to 9,000 km), l-d spectra of equatorial

baroclinic  Rossby waves exhibit a power-law behavior F(k) - k-2. Spatio-temporal

autocorrelation  function (hence, its various functional, such as complex wavenumber-



frequency spectra, etc.) yield quantitative characterization of planetary waves, including

estimation of their dispersive properties and characteristic speeds.

A1}l)IINDIX:  EFFECT OF WAVE I) ISPIIRSION

In a case of weakly-dispersive waves, such as equatorial trapped planetary waves,

W(r,z) provides highly useful information. The following simple model allows one to

relate parameters of equatorial waves with the observed features of the autocorrelation

function.

We are concerned with the case when the internal Rossby radius of deformation,
..7... 1/2

[)& hR =  —
2P ‘

is small compared to the characteristic length of the equatorial waves:

= 2.3”10-11 (m s)-] and ~h = 2 ntis. The phase speed of weakly

be written, with a sufficient degree of generality, in the form:

c(k) = CO(1 –Ek2)
In the case of trapped Rossby waves,

mt
cO=–2m+l  ‘

co and E are

R2~ = —-.-.—
m+-1/2

(Al)

R~ <<1, Ilere, ~

dispersive waves can

(A2)

(A3)

with m being the number of the horizontal wave mode. To avoid imposing a particular

theoretical dependence on co and & we shall use (1) in the non-dimensional form:
m

~(~,~) = jF(K)f3Xp[i~K(?-i) + i~iK3]dK (A4)
o

The non-dimensional variables and parameters can be expressed in terms of R, co and ko as

follows:
co (~R)2Q

K=k/ko,  F= r/L, Z= —’c, Q = k o L ,  ~= – - - - - - - T - -
1. m+~

(AS)

In our numerical experiment with (A4), we shall determine the value of ~ that yields the

same relative reduction of ~(r, Z) near the peak as is observed in Fig. 15 at large t.



“1’he desirable properties of the wavenumber  spectrum are: a sharp Iow-wavenumbcr

cutoff at K=l and a k-z power-law behavior at K >1. These are achieved by choosing, for

instance

F(K) = exp(–1 / K4)K-2 (A6)

In l:ig. 16, the real part of (A4) is plotted based on numerical integration with the wave

dispersion parameter ~ = O. ]. This value results in about a 50 percent decrease of W(r,z)

in the peak region for finite T, which is in agreement with the observations shown in Fig.

15. Greater values of E would yield a deeper reduction of the near-peak values of W(r,~).

Relationships (AS) indicate that ~ = O.] is not unreasonable: with the spatial scale L - l@

km, wavelength 2n/kO - 2“1 OS km and internal Rossby  radius R -100 km, (AS) yields Q =

3 and E -10-1. In the absence of dispersion, the autocorrdation  structure (a dashed line in

Fig. 16) propagates about 1.6 times as fast as it does in the presence of dispersion, This

allows one to estimate the wdue of co as 1.6 * E = 2.1 m/s.
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Captions for Figures

I~igure  1. Panel A: Altimeter ground tracks passing through Region 1 (the inner rectangle)

within a 1-day periocl.  Thin dotted lines in the outer region represent “fringe” segments of

satellite groundtracks. Panel B: r-points for tracks in panel A. Here, SSH measurements

are sampled every 4th point along the tracks.

Figure 2. Panel A: Altimeter ground tracks passing through Region 1 within a 4-day

period, Panel B: r-points for tracks in panel A. }Iere, SSH measurements are sampled

every 4th point along the tracks.

Figure 3. The number of SS}1 products N(r) used for calculation of W(r) for Region 2,

Figure 4. Ocean regions selected for analysis..

Figure 5. Spatial autocorrelation  function W(r) (normalized by W(0)= 0.0021 m2) for

Region 2 based on a 5-day synchronicity  interval. Thick solid contours represent level

W(r)=O. Thin solid contours represent levels: 0.05,0.1,0.3, and 0.8. I~ashed  contours

represent levels: -0.10 and -0.15.

l~igure  6. Two-dimensional wavenumbcr spectrum, F(k), corresponding to W(k) in Fig.

‘5. .

Figure 7. Spatial autocorrelation  function W(r) (normalized by W(0)= 0.0024 m2) for

Region 2 based on a 10-day synchronicity  interval. Contours are drawn as explained in

Fig. 5.

Figure 8. Two-dimensional wavenumber spectrum, F(k), corresponding to W(k) in Fig.

7.

Figure 9. Spatial autocorrelation  function W(r) (normalized by W(0)= 0.0210 m2) for

Region 1 based on a lo-day synchronicit  y interval. Contours are drawn as explained in

Fig. 5.

Figure 10. Two-dimensional wavenumber spectrum, F(k), corresponding to W(k) in Fig.

9.
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Figure 11. l-d sections of 2-d spectra: Spectral cross section along the zonal wavcnumber

is shown by the diamond-marked curve; Spectml  cross section along the meridional

wavenumber is shown by the crosses-marked curve. Panel A corresponds to Figs.8,

Panel B corresponds to Fig, 10.

Figure 12. l-d spectra, calculated using eq(5). Dashed line represents a power-law

spectrum k-4. Panel A is based on F(k) of Fig. 8, Panel B is based on F(k) of Fig. 10.

Figure 13.

Figure 14.

Satellite ground tracks in a zonal band of equatorial Pacific.

One-dimensional spatial autocorrelation  function, W(r), for the area 160°-

2800  W, 0.5%- 0.50N,  for several values of the synchronicity interval: a) At = 1 day, b)

At = 2 days, c) At = 7 days, d) At = 10 days.

Figure 15. Mixed autocorrelation  functions, W(r,~), for the equatorial Pacific region

described in Fig. 13, for time lags, T: 10,20, 30,40, 50, and 60 days.

Figure 16. The non-dimensional mixed autocorrelation  function W(r,z) based on (A4)

with Q=3. Numbers at the curves give values of T. Solid curves: z >0 and E = 0.1. The
dashed curve with T =0.7 is based on & =0.
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